Major Water Conservation Initiative: New Approach Developed for First California Statewide Irrigated Landscape Analysis

WaterSmart Innovations Conference

Andrew Brenner, Peter Brostrom, Aron Boettcher and Wayne Tate

Online, September 2020

Overview of Presentation

- Background to Program
- Technical Approach
- Output Datasets
- Using the Data
- Questions/Discussion

Background

California Statewide Urban Irrigated Landscape Program

Water Budget Targets

- Need an equitable way of assessing urban water use
- Recognize the efficiency of water use
- Water Use Objective customized to each district
 - Population
 - Landscape area
 - Potential Evapotranspiration
 - ET₀
 - Adjust with local variances where important

Conservation Programs

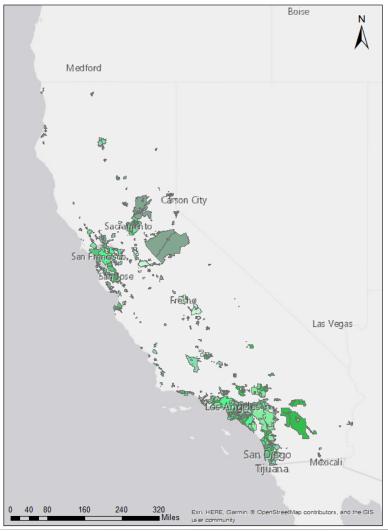
- SBX 7-7 20% by 2020 Method 2:
 - 55 gallons per capita per day Indoor Residential
- restrictions approved by GOV. JEITY Brown 2018 amento Bee May 31 Outdoor Water Use (Model Water Efficient Landscape Ordinance) (MWELO)
 - Landscape area x ET₀ x factor
 - 10% reduction in Commercial, Institutional and Industrial (CII) Water Use
- Executive Order B-37-16
 - Calls for 5 state agencies to develop recommendations for long term water conservation framework
 - Specifically calls for water budget target approach
 - Framework report released April 2017.
- SB 606/AB 1668
 - 4 Sections
 - Section: Water Use Objectives

Get ready to save water. Permanent California

Water Use Objectives:

Indoor Residential Budget {55 gal/person day}

Outdoor Irrigation Budget {Landscape area x ET₀ x factor}


Distribution System Water Loss Budget

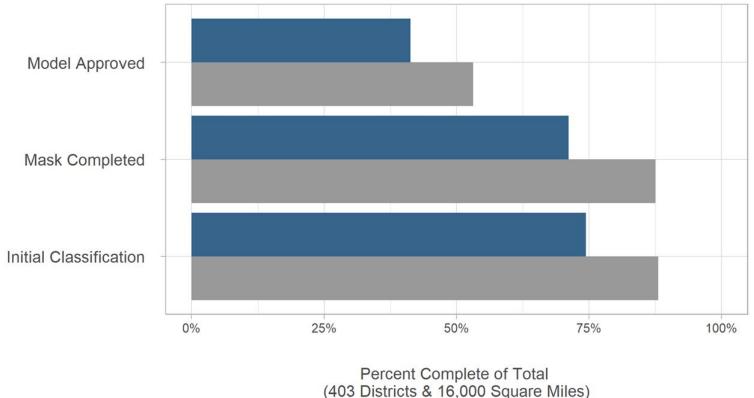
Annual Water Use Objective

- Compliance based on overall objective do not have to comply with individual budgets
- Compliance based on service area average not individual parcel

Need to Understand Landscape Area

- Phase 1: Method investigation
- Phase 2a: Analysis of 2 districts
- Phase 2b: Assessing 17 districts
- Phase 3: Assess remaining water districts
- Total number of districts = 400
- ~16,000 square miles of urban landscape

Estimating Irrigated Landscape Area


California Statewide Urban Irrigated Landscape Program

Classification Key

- Irrigated
 - Lawns
 - Shrubs and trees
 - Ground cover in irrigated areas (mulch/soil)
- Irrigable not Irrigated
 - Dry lawns
 - Dry landscaping that has evidence of irrigation
- Not Irrigable
 - Structures, roads, sidewalks, impervious
 - Undeveloped land
 - Open Water
- Special Cases
 - Horse Corals
 - Artificial Turf

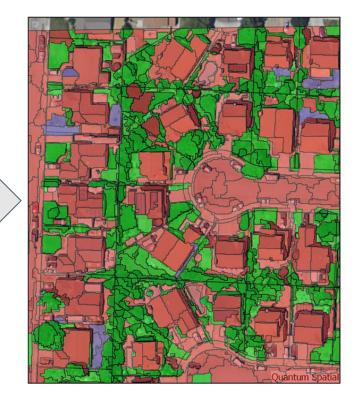
Overall Progress to Completion

Number of Districts

Area (sq mi)

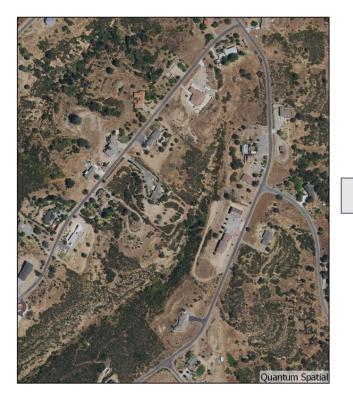
Acquire Digital Imagery and Ancillary Data

- Define Water District AOI: Now have 400 defined AOIs
- Aerial Imagery: 1 ft, 4 band, collected mid summer 2018
- Parcel Data: Consolidated County data for whole state with land use descriptions
 - Single Family Residential (SFR)
 - Multi-family Residential (MFR)
- Licensed data

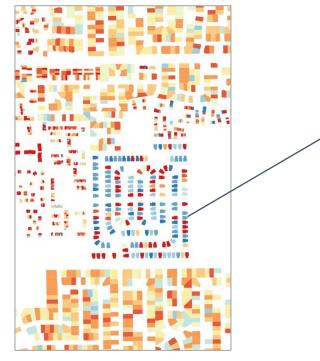

Imagery Segmentation: Using 4-band imagery, self-similar regions of pixels are grouped together to create features (super-pixel objects).



Initial Land Cover Classification: Features are assessed and classified using advanced machine learning techniques.

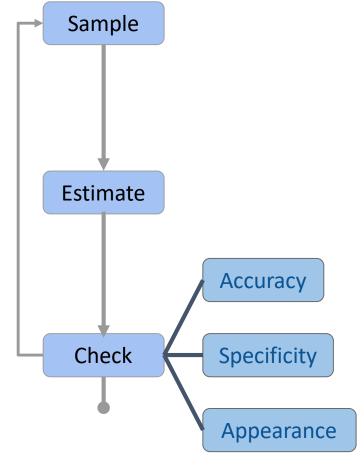


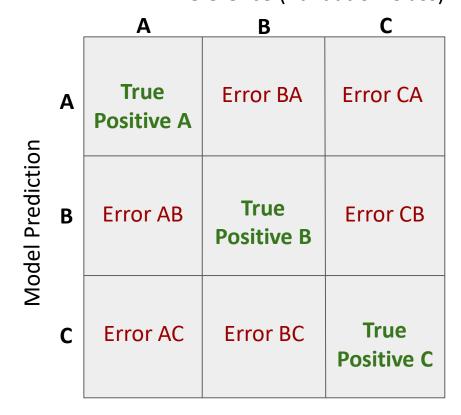
Network Creation: Parcels are networked based on similarity of cover classes and parcel attributes.



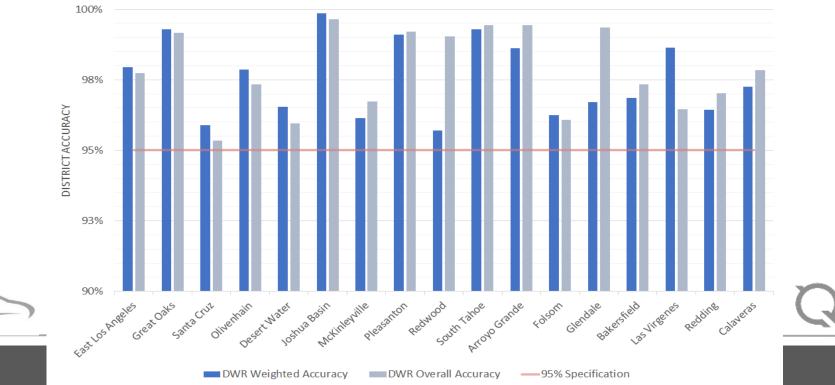
Derived Land Masks: Undeveloped lands, agriculture, and horse corrals are manually captured by human photo interpreters in order to ensure correct classification in the LAE project.

Training Data: The most highly connected parcels in the network are selected as reference data, and manually digitized to establish relationship between land cover and land use.

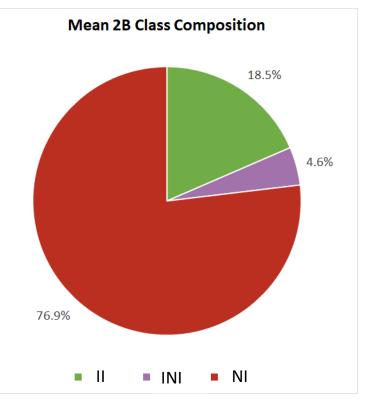

Final Land Cover Classification: A unique model is tuned to the specific parameters of the district using training data, and features are assessed and classified using advanced machine learning techniques.


Assessing the Accuracy of the Model Classification

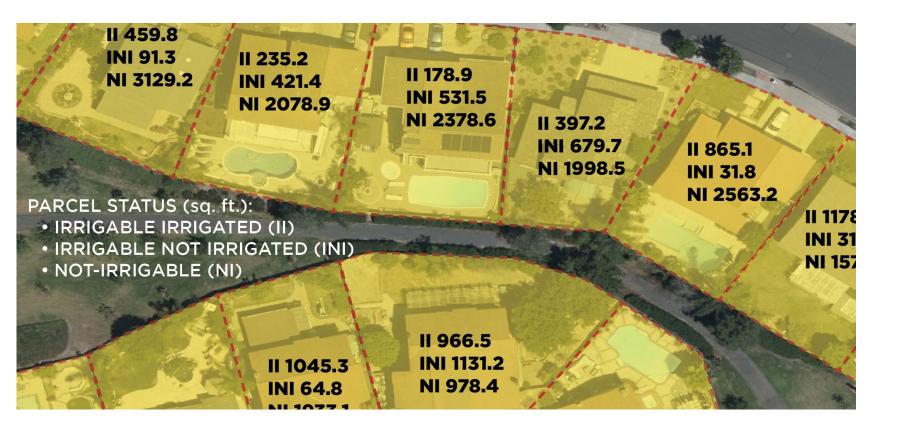
- A unique model for each district is used to classify super-pixel objects.
- Accuracy assessment is performed on every district.
- Model results are compared to a manually digitized validation classification for each super-pixel object and assessed using a confusion matrix.


Confusion Matrices

Confusion matrices are a powerful way to visualize the performance of a classification model. Reference (Validation Class)


Accuracies

- Goal: 95% agreement with independent assessment over the district
- System designed to avoid bias, so final area can be used as guidance for allowance with confidence
- Results from 17 Phase 2B Districts


Distribution of Irrigation Status Class

Water District	Ш	INI	NI
District 1	24.31	5.81	69.88
District 2	2.12	4.06	93.82
District 3	23.22	9.13	67.65
District 4	19.24	9.06	71.69
District 5	19.38	4.39	76.23
District 6	27.7	5.64	66.66
District 7	25.73	3.26	71.01
District 8	25.95	3.61	70.44
District 9	0.5	0.1	99.4
District 10	6.93	0.34	92.73
District 11	13.29	1.08	85.63
District 12	23.04	7.34	69.62
District 13	28.77	1.92	69.31
District 14	21.36	5.97	72.67
District 15	25.33	8.3	66.36
District 16	23.66	8.74	67.6
District 17	3.92	0.05	96.03

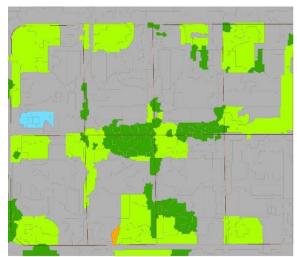
	II	INI	NI
Mean	18.50	4.64	76.87
SD	9.15	3.11	11.26

Estimates at a Parcel Basis

Q

Deliverables as part of the Program

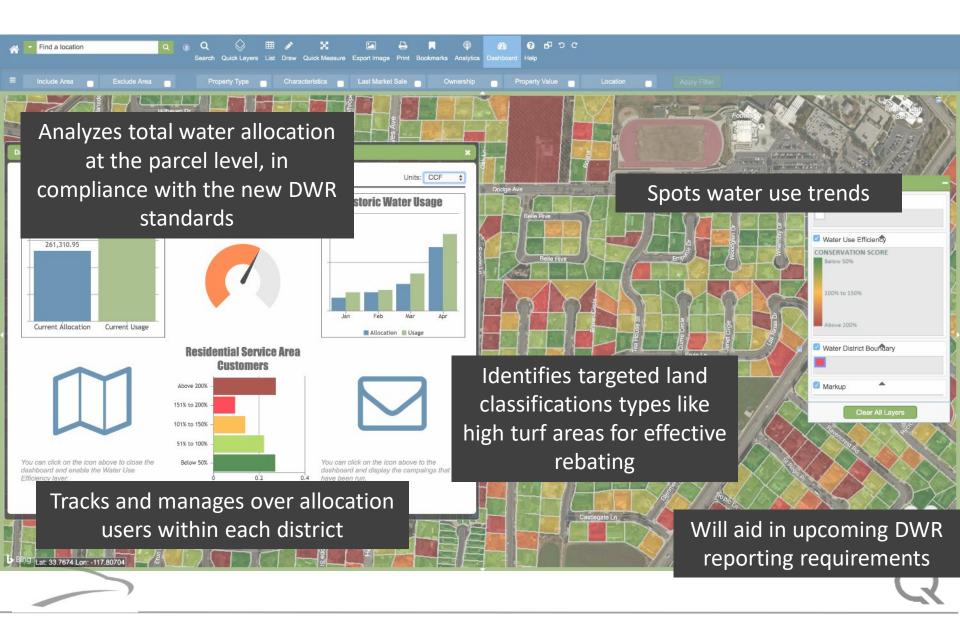

- Aggregated irrigated and irrigable landscape area estimates for single family and multi-family parcels – csv and shapefile output of irrigated area, irrigable not irrigated and non-irrigable area
- A subset of validation parcels fully classified parcels used by QSI to ensure model accuracy meets contract specifications
- Parcel level estimates
- Summary reports for each water district outlining methods and metadata



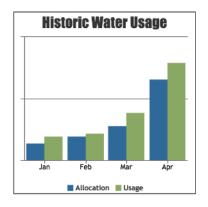
Output Datasets and How they Can be Used

California Statewide Urban Irrigated Landscape Program

Uses of the Data


7126411 grass 503.00 13.80
7126411 impervious 2604.02 71.46
7126411 trees/bushes 537.01 14.74
7126409 impervious 3384.00 78.33
→7126409 grass 843.00 19.50
7126409 trees/bushes 93.00 2.17

Q



Consistent Over-Users

Identify customers that are over applying water month after month

Ability to see over-water users in your district

-

865000

2642

0.14

6000

Mon Jun 30 2014 00:00:00 GMT-0500 (Mountain Daylight Time)

1977

Additional Comments/Questions?

Wayne Tate Eagle Aerial Solutions 3420 Bristol St, 6th Floor, Costa Mesa, CA 92626 Ph. (714) 754-7670 – www.eagleaerial.com

Andrew Brenner Quantum Spatial, Inc. 1100 NE Circle Blvd. Corvallis, OR 97330 Ph. 734-680-6424 – www.quantumspatial.com

